
PST
Classic SDK Manual

PS-Tech B.V.
Falckstraat 53 hs
NL 1017VV Amsterdam
The Netherlands
Call: +31 (0)20 331 1214
Fax : +31 (0)20 524 8797

info@ps-tech.com
http://www.ps-tech.com

While every precaution has been taken in the preparation of this manual, PS-Tech B.V.
assumes no responsibility for errors or omissions.

Copyright ©2021 by PS-Tech B.V., Amsterdam, the Netherlands

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, mechanical, photocopying, record-
ing or otherwise, without the prior written permission of PS-Tech B.V.

PS-Tech, the PS-Tech logo, PST, PST Iris (HD), PST Base (HD) and PST Pico are either reg-
istered trademarks or trademarks of PS-Tech in the United States and/or other countries.

Rev. 1.2.2-0-gd0d9de1

mailto:info@ps-tech.com
http://www.ps-tech.com

Legal

License agreement

The products of PS-Tech B.V. (PS-Tech) come with a software license agreement.
This END USER LICENSE AGREEMENT (EULA) is shipped with each product, and
is available on request at the offices of PS-Tech B.V.

In no event shall PS-Tech be held liable for any incidental, indirect, or conse-
quential damages whatsoever (including, without limitation, damages for loss
of business profits, business interruption, loss of business information, or any
other pecuniary loss) arising out of the use of or inability to use the software or
hardware.

Patent liability

No patent liability is assumed with respect to the use of the products of
PS-Tech B.V.

Copyright information

Portions of the software included in this package contain licensed third-party
technology. With some of these, you also may have additional rights, particu-
larly to receive source code of these projects. The LDL and COLAMD libraries of
the SuiteSparse project are licensed under the GNU LGPL. The SSBA library is
licensed under the GNU LGPL. This software is based in part on the work of the
FLTK project. The DevIL library is licensed under the GNU LGPL. The relevant
third-party licenses are included in the license.txt file in your PST installation.
Please contact PS-Tech to obtain source copies of these libraries.

ii

Contents

Legal ii
License agreement . ii
Patent liability . ii
Copyright information . ii

1 Software development kit 1
1.1 Usage . 1
1.2 Datatype: PSTSensor . 1
1.3 Datatype: PSTPoint . 2
1.4 Header pstapi.h . 3
1.5 Example . 4

iii

1 Software development kit

The Classic PST Software Development Kit (Classic SDK) provides an interface
between the PST tracking system and your own software applications.

Note that with the release of the new PST SDK in version 5.0.0 of the PST
software package, the Classic PST SDK is labeled as legacy software and is
only offered for backwards compatibility. When a new project making use of
the PST tracking system is started it is highly recommended to use the new
PST SDK. Documentation for the new PST SDK can be found in the Start menu
as “PST SDK Manual” or can be opened by opening the “index.html” file in the
“Development/docs” directory in the installation path.

1.1 Usage

To use the Classic PST SDK in your own software, include the header file
“pstapi.h” in your project. The Classic PST SDK library is dynamically (pst.lib/pst.dll
or pst.so) or statically (pst.a) linked with your program.

Note that the Classic PST SDK communicates with the PST client software that
is included with your PST installation. If this application is not running you will
not receive tracker events in your application, even if the tracker unit itself is
running.

The Classic PST SDK contains two data types to describe tracker data events:
PSTSensor and PSTPoint.

1.2 Datatype: PSTSensor

Description
PSTSensor sensor events are generated when a tracking target is visible and has
been identified by the PST.

1

1.3. Datatype: PSTPoint

Member documentation

name char[80] Name of the tracking target as listed in the
PST client software.

id int Identifier of the tracking target as listed in the
PST client software.

pose float[16] Row-major 4 × 4 transformation matrix de-
scribing the pose of the tracking target in the
coordinate system as defined in the PST client
software (see the “Reference coordinate sys-
tem” Section in the PST Manual). The pose is
defined as:
p0 p1 p2 p3
p4 p5 p6 p7
p8 p9 p10 p11
p12 p13 p14 p15

 =

Ux Vx Wx Tx

Uy Vy Wy Ty

Uz Vz Wz Tz

0 0 0 1

where pi represents the elements from the

pose, the vectorsU ,V ,W represent the 3× 3
rotation matrix in radians, and T represents
the translation vector in meters.

timestamp double Timestamp of the moment the cameras
captured the data. The timestamp uses
the system clock provided in seconds since
system boot (Windows) or Epoch (Linux).

1.3 Datatype: PSTPoint

Description
Point events are generated for single visible 3D points that have not been iden-
tified as part of an tracking target.

Member documentation

2

1.4. Header pstapi.h

id int Identifier of the 3D point. As a single 3D point
has no features to distinguish it from another,
points are given an identifier based on their
previous motion. Note that there is no guar-
antee that the identifier is consistent between
sensor updates.

pos float[3] The 3D position of the point in meters.

timestamp double Timestamp of the moment the cameras
captured the data. The timestamp uses the
system clock provided in seconds since system
boot (Windows) or Epoch (Linux).

1.4 Header pstapi.h

Description
The interface to the PST client software.

Function documentation
int pst_connect()

Connect to the PST
Return value int One on success, zero on failure

int pst_disconnect()

Disconnect from the PST
Return value int One on success, zero on failure

int pst_sensor_changed()

Check if any PST sensor has been updated since the last time it was read by the
SDK
Parameters id The identifier of the device (0-99)
Return value int One if new data is available, zero if no new data is

available

int pst_sensor_changed_by_id(int id)

Check if the PST sensor indicated by id has been updated since the last time it
was read by the SDK
Parameters id The identifier of the device (0-99)
Return value int One if new data is available, zero if no new data is

available

3

1.5. Example

int pst_get_sensor(struct PSTSensor* sensor)

Get the last PST sensor event if a new event is available
Parameters sensor A pointer to an allocated PSTSensor struct to re-

ceive a new event
Return value int One if a new event is returned, zero if no new data

is available

int pst_get_sensor_by_id(int id, struct PSTSensor*

sensor)

Get the last PST sensor event with the given id if a new event is available
Parameters id The identifier of the device (0-99)

sensor A pointer to an allocatedPSTSensor struct to re-
ceive a new event

Return value int One if new data is available, zero if no new data is
available

int pst_point_changed()

Check if any PST point has been updated since the last time it was read by the
SDK
Return value int One if a new point is available, zero if no new point is

available

int pst_get_point(struct PSTPoint* point)

Get the last PST point event if a new event is available
Parameters id A pointer to an allocated PSTPoint struct to receive a

new event
Return value int One if a new point is available, zero if no new point is

available

int pst_get_connection_state(int* state)

Get the connection state of the SDK to the PST client
Parameters state A pointer to an int. After the call returns success-

fully, state will be set to one if a connection is ac-
tive, zero otherwise.

Return value int One if the state was received successfully, zero oth-
erwise

1.5 Example

i n c l u d e < s t d i o . h >
i n c l u d e < math . h >
i n c l u d e < s t d l i b . h >
i n c l u d e " p s t a p i . h "

4

1.5. Example

i n t main (i n t a r g c , c h a r * * a r g v)
{

i n t i , j ;
s t r u c t P S T S e n s o r s e n s o r ;

/ / c o n n e c t t o t h e P S T
i f (! p s t _ c o n n e c t ())

e x i t (1) ;

/ / i n f i n i t e l o o p . . .
w h i l e (1)
{

/ / l o o p o v e r a l l new s e n s o r e v e n t s
w h i l e (p s t _ g e t _ s e n s o r (& s e n s o r))
{

/ / p r i n t o u t t h e name a n d i d
p r i n t f (" D e v i c e : \ " % s \ " , i d : %d \ n " ,

s e n s o r . name , s e n s o r . i d) ;

/ / p r i n t t h e r o t a t i o n m a t r i x
p r i n t f (" O r i e n t a t i o n : \ n ") ;
f o r (i = 0 ; i < 3 ; ++ i)
{

p r i n t f (" ") ;
f o r (j = 0 ; j < 3 ; ++ j)

p r i n t f (" %.2 f " ,
s e n s o r . p o s e [i * 4 + j]) ;

p r i n t f (" \ n ") ;
}

/ / p r i n t t h e t r a n s l a t i o n v e c t o r
p r i n t f (" \ n T r a n s l a t i o n : \ n ") ;
f o r (i = 0 ; i < 3 ; ++ i)

p r i n t f (" %.2 f " ,
s e n s o r . p o s e [i * 4 + 3]) ;

p r i n t f (" \ n \ n ") ;
}

}

/ / d i s c o n n e c t f r o m t h e P S T

5

1.5. Example

p s t _ d i s c o n n e c t () ;

r e t u r n 0 ;
}

6

	Legal
	License agreement
	Patent liability
	Copyright information

	Software development kit
	Usage
	Datatype: PSTSensor
	Datatype: PSTPoint
	Header pstapi.h
	Example

